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Efficient computation of genotype probabilities for loci with many alleles:
I. Allelic peeling

R. M. Thallman1, G. L. Bennett, J. W. Keele, and S. M. Kappes
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ABSTRACT: Genetic marker data are likely to be
obtained from a relatively small proportion of the indi-
viduals in many livestock populations. Information
from genetic markers can be extrapolated to related
individuals without marker data by computing geno-
type probabilities using an algorithm referred to as
peeling. However, genetic markers may have many al-
leles and the number of computations in traditional
peeling algorithms is proportional to the number of
alleles raised to the sixth or eighth power, depending
on pedigree structure. An alternative algorithm for
computing genotype probabilities of marker loci with
many alleles in large, nonlooped pedigrees with incom-
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Introduction

Genetic marker information in livestock populations
is expected to increase rapidly. Marker information used
for identifying QTL and linkage mapping has primarily
been collected from large experimental and industry
families with three-generation pedigrees and nearly
complete marker data (Rohrer and Keele, 1998; Zhang
et al., 1998; Stone et al., 1999). Much more information
could be gleaned by calculating genotypic probabilities
for individuals with missing marker data and tracking
markers over an extended pedigree in commercial or
long-term experimental populations. This would effec-
tively tie some large families together as well as includ-
ing many individuals in smaller families.

The method of “peeling” for the calculation of genotype
probabilities is based on ideas formulated by Elston and
Stewart (1971) and has been extended (Lange and Els-
ton, 1975; Cannings et al., 1978; Fernando et al., 1993).
Peeling has been used extensively in human genetics,
but primarily on pedigrees with fewer than 100 individu-
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plete marker data is presented. The algorithm is based
on recursive computations depending on alleles instead
of genotypes, as in traditional peeling algorithms. The
number of computations in the allelic peeling algorithm
presented here is proportional to the square of the num-
ber of alleles, which makes this algorithm more compu-
tationally efficient than traditional peeling for loci with
many alleles. Memory requirements are roughly pro-
portional to the number of individuals in the pedigree
and the number of alleles. The recursive allelic peeling
algorithm cannot be applied to pedigrees that include
full sibs or loops. However, it is a preliminary step
toward a more complex and encompassing iterative ap-
proach to be described in a companion paper.

als. Applications of peeling in livestock pedigrees (van
Arendonk et al., 1989; Kerr and Kinghorn, 1996; Wang
et al., 1996) have focused on models with two alleles
and three genotypes. Monte Carlo methods of pedigree
analysis (Guo and Thompson, 1992; Uimari et al., 1996)
and peeling are both computationally demanding for
large, complex pedigrees with many marker alleles.

The objective of this research was to reformulate the
method of peeling to make it more computationally effi-
cient for a single marker locus with many alleles (e.g.,
microsatellites) in a large population. This method has
been extended (Thallman et al., 2001) to handle several
practical situations that occur in the analysis of genetic
markers: looped pedigrees, errors in marker data, and
computation of probabilities that summarize the segre-
gation pattern.

Materials and Methods

In the analysis of marker data in simple pedigrees,
the ordered genotypes (dam allele, sire allele) of individu-
als are often “inferred” based on the rules of Mendelian
inheritance. In some situations, there is not enough in-
formation to infer the ordered genotype with certainty;
these genotypes may be considered uninformative. In the
context of peeling, the genotypes are always considered
unobservable and therefore unknown, but inferences
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about the genotypes are obtained in the form of probabili-
ties. If a locus has A alleles, then there are A2 possible
ordered genotypes and the probability of each genotype,
conditional on marker data, can be computed for an indi-
vidual of interest. If the ordered genotype can be inferred
based on the rules of Mendelian inheritance, then that
genotype will have a probability of one and the remaining
genotypes will each have probability of zero. In cases
with less information, many or all of the genotypes may
have nonzero probabilities. Peeling allows inferences to
be readily obtained from marker data that are many
generations removed from an individual.

Probabilities of possible genotypes of an individual
with no marker data are theoretically dependent on all
marker data in the pedigree. Expressions for computing
these quantities directly from the marker data are not
computationally efficient and can be difficult or impossi-
ble to generalize in complex pedigrees. The method of
peeling solves this problem by breaking the calculations
into a series of simpler calculations that are applied
first to founders and nonparents and subsequently to
individuals with both parents and progeny. Peeling algo-
rithms use recursive formulas that involve only the indi-
vidual’s parents and progeny. Consequently, the re-
cursive formulas are very general, even in large ped-
igrees.

We refer to the traditional peeling algorithms (Lange
and Elston, 1975; van Arendonk et al., 1989; Fernando
et al., 1993) as “genotypic peeling,” because they are
based on recursive relationships among probabilities of
genotypes of individuals. We propose an alternative algo-
rithm, “allelic peeling,” based on probabilities of alleles
transmitted from parent to offspring. Specifying the re-
cursive relationships in terms of alleles rather than ge-
notypes greatly improves the computational efficiency
for loci with many alleles, such as microsatellite
marker loci.

Definitions and Notation

We assume a pedigreed population with all genetic
relationships among individuals known and all common
ancestors included in the pedigree. Figure 1 shows a
simple pedigree that will be useful in describing the
algorithm. Each individual in the pedigree has an (unob-
servable) ordered genotype, gi = [aid, ais], where aid is the
allele individual i inherited from its dam, d, and ais is
the allele i inherited from its sire, s. Some of the individu-
als in the pedigree have marker data, considered to be
phenotypes (Lincoln and Lander, 1992). The relationship
between phenotypes and genotypes is specified by the
penetrance function (or genetic model).

An individual, x, is connected to i if there is a path
that starts at i and ends at x, regardless of the direction
of the arrows. If x is connected to i, gi may be statistically
dependent on gx. The pedigree can be divided into “paren-
tal” and “progeny” subsets relative to i. The parental
subset relative to i through its parent, d, includes all
individuals that are connected to i by at least one path

Figure 1. Partitioning a pedigree without loops into
parental, individual, and progeny subsets relative to indi-
vidual i. The marker phenotype is represented by the pair
of numbers to the right of the individual. For example,
the phenotype of individual a is 2/2.

that includes parent d. The progeny subset relative to i
through its progeny, k, includes all individuals that are
connected to i by at least one path that includes progeny
k. The term “connected” is more inclusive than genetic
relationship. For example, in Figure 1, b is included in
the parental subset relative to i through d, although b
is not related to i. The algorithm does not require that
the various subsets of individuals be listed explicitly,
because the peeling algorithm uses these subsets auto-
matically.

For convenience, we assume that all individuals in
the pedigree are connected to one another. If a population
does contain unconnected subsets, then each subset can
be analyzed as an independent pedigree.

In Figure 1, all the subsets are independent other than
through their connection with i (independent subsets
conditional on i). There are many common situations in
livestock pedigrees that may cause the subsets to be
dependent. Inbreeding and mating a sire to genetically
related dams are examples. These situations create
“loops” in the pedigree (Cannings et al., 1978). A loop
occurs when an individual can be connected to itself,
through two different parents and(or) progeny. For ex-
ample, Figure 1 does not contain any loops, but if it was
modified so that b was the sire of m, then i would be
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Table 1. Notation for probability distributions and likelihoods used in allelic peeling

Property Elements Row Column
Symbola Name of sum to one? Dimensionsb indexc indexc Description

� Allele Population Yes A × 1 a Prior probability of allele a
frequencies

M(i) Penetrance Individual No A × A aid ais Likelihood of the phenotype of i
matrix conditional of gi = [aid, ais]

P(ki) Parental Meiosis Yes A × 1 aki Probability of allele aki having been
prior transmitted from i to k conditional on data in
distribution the parental subset relative to k through i

L(ki) Progeny Meiosis No A × 1 aki Scaled likelihood of data in the progeny
likelihood subset relative to i through k conditional on

allele aki having been transmitted from i to k
G(i) Genotype Individual Yes A × A aid ais Probability that gi = [aid, ais] conditional on

distribution all marker data in the pedigree

aThe parentheses enclose the identification of the individual or meiosis to which the matrix pertains. The values i and ki are placeholders,
not specific individuals or meioses.

bRows × columns. A is the number of alleles.
cThe alleles i inherited from its dam and sire are represented by aid and ais, respectively. The allele transmitted through meiosis ki is

represented by aki.

included in a loop because the path i-k-p-m-b-h-d-i would
then connect i to itself through k and d. In this article,
we assume that there are no loops in the pedigree. Thall-
man et al. (2001) explain how to apply allelic peeling to
pedigrees that contain loops.

In genetic linkage analysis, the basic unit of informa-
tion is the meiosis, rather than the individual. In the
linkage analysis literature, it is common to refer to infor-
mative meioses, recombinant meioses, and nonrecombi-
nant meioses (Ott, 1999). We use the term meiosis in a
similar manner but define it more precisely as a parent-
offspring pair. Meioses connect pairs of individuals and
correspond to the arrows in the pedigree in Figure 1.
Meioses in the pedigree are identified by the pair of
italicized, lowercase letters corresponding to the off-
spring and the parent in the meiosis (e.g., ki refers to
the meiosis from parent i to offspring k).

One objective of peeling is to compute the probability
that the individual of interest has each of the A2 possible
ordered genotypes, conditional on marker data. The set
of these A2 genotype probabilities is the genotype distri-
bution. We represent the genotype distribution as an A ×
A matrix with rows corresponding to the allele inherited
from the dam and columns corresponding to the allele
inherited from the sire. We present the peeling formulas
in matrix form so that they pertain to entire probability

The other main function involved in the recursion is the scaled progeny likelihood for meiosis id, L(id), which is
a column vector of length A proportional to the likelihood of marker phenotypes connected to d through its progeny,
i, conditional on each possible allele at the locus having been transmitted from d to i. Because L(id) is a vector of
scaled likelihoods, its elements do not sum to one. The scaled progeny likelihood for the meiosis of maternal origin
is calculated as

L(id) = cL(id)−1 {M(i) ° Π°
t�progeny(i)

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]} � P(is) [1]

where

distributions rather than to only the probabilities of indi-
vidual alleles or genotypes.

Definition of Recursive Elements

Table 1 contains the symbols and definitions of the
main probabilities used in allelic peeling. The pene-
trance function, M(i), is used to relate the genotype to
the phenotype according to the genetic model for the
locus. Specifically, it is an A × A matrix of likelihoods of
the phenotype of i conditional on each possible genotype
of i. The information contained in the phenotype of an
individual is summarized by and enters the peeling algo-
rithm through the penetrance matrix of the individual.
In the analysis of marker loci, a complete penetrance
model is typically used (i.e., the phenotype is completely
determined by the genotype). The complete penetrance
model for autosomal loci is assumed for this paper. For
example, in Figure 1 with three alleles at the locus, the
phenotype of r is 1/2, so elements 1, 2 and 2, 1 of M(r)
are equal to one and all other elements of the 3 × 3
matrix are equal to zero. Because d does not have a
phenotype, M(d) is a matrix filled with ones.

The peeling algorithm is made recursive by functions
of subsets of the marker data. One of these is the parental
prior distribution for a meiosis, P(ki), which is a column
vector of length A and is described in more detail subse-
quently as well as in Table 1.
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cL(id) = �′ � {M(i) ° Π°
t�progeny(i)

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]} � P(is)

The operator � represents standard matrix or scalar multiplication, whereas the operator ° represents elementwise
multiplication of matrices. The multiple product is elementwise over each of the progeny of i and is eliminated from
the formula if i has no progeny. The operator ′ indicates matrix transposition. The constant, 1, is a column vector
of length A filled with ones. The scalar, cL(id), is a scaling factor used to prevent numeric underflows in large
pedigrees. In [1], and all of the equations that follow, i, d, s, and k do not refer to specific individuals in Figure 1,
but instead refer to any individual and its dam, sire, and progeny, respectively.

In [1], L(id) summarizes the information about aid contained in the progeny subset relative to the dam, d, through
its progeny, i. This is accomplished by converting the scaled likelihood of phenotypes connected to i through t
conditional on ati into the scaled likelihood of the same phenotypes conditional on aid and ais, which is [0.5 � L(ti) �
1′ + 0.5 � 1 � L(ti)′]. The progeny subsets of phenotypes relative to i through different progeny and the phenotype
of i are mutually independent conditional on both aid and ais. Therefore, their scaled likelihoods conditional on aid

and ais can simply be multiplied together. The product is reduced to L(id), the scaled likelihood of the same phenotypes
conditional only on aid by the matrix multiplication by P(is), which is equivalent to summation over the possible
values of ais. The union of the subsets of phenotypes considered in the right-hand side of [1] is the progeny subset
of d through i.

The scaled progeny likelihood for the meiosis of paternal origin is calculated as

L(is) = cL(is)−1{M(i) ° Π°
t�progeny(i)

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]}′ � P(id) [2]

where

cL(is) = �′ � {M(i) ° Π°
t�progeny(i)

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]}′ � P(id)

The only difference between [1] and [2] is that the A × A matrix in braces is transposed when computing the result
for the paternal meiosis. For the models described in this paper for autosomal loci, this matrix is symmetric, so [1]
and [2] are equal. However, for several extensions to the method, including sex-linked loci and peeling conditional
on linked loci, the matrix is asymmetric. The matrix transposition in [2] ensures that it is the maternally inherited
allele that is marginalized out of the likelihood when computing L(is).

The terms in [1] and [2] that are equal to 0.5 are prior probabilities of the associated meiosis having inherited
either the parent’s maternally or paternally derived allele. When peeling conditional on linked loci, they can take
values different from 0.5, and therefore they are included in the formulas.

The parental prior distribution for a meiosis, P(ki), is a column vector of length A, with elements containing the
probabilities of each allele at the locus having been transmitted through meiosis ki conditional on marker phenotypes
connected to k through its parent, i. It is computed recursively as

P(ki) = cP(ki)−1[0.5 � P(id) ° ({M(i) ° Π°
t�progeny(i)

t≠k

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]} � P(is)) [3]

+ 0.5 � P(is) ° ({M(i) ° Π°
t�progeny(i)

t≠k

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]}′ � P(id))]

where

cP(ki) = ∑[0.5 � P(id) ° ({M(i) ° Π°
t�progeny(i)

t≠k

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]} � P(is))

+ 0.5 � P(is) ° ({M(i) ° Π°
t�progeny(i)

t≠k

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]}′ � P(id))]

The terms, P(id) and P(is) are the parental prior distributions of the alleles transmitted to i by i’s dam, d, and sire,
s. The elements of P(ki) are forced to sum to one by the scaling factor, cP(ki). The summation in the expression for
cP(ki) is over the A elements of the vector.
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The parental prior distribution, P(ki), summarizes the information about aki contained in the parental subset
relative to k through i. In [3], P(id) is multiplied elementwise by a term that is the same as L(id) except that it
excludes the progeny subset relative to i through k. The subsets of phenotypes considered by P(id) and the modified
form of L(id) are disjoint (independent conditional on aid) and their union is the parental subset of phenotypes
relative to k through i. Therefore, after scaling by cP(ki), this product is equal to the parental prior distribution of
aki conditional on k having inherited the allele that i inherited from d (aki being identical by descent to aid). The
0.5 that this product is multiplied by is the prior probability of that condition having been met. The remainder of
[3] contains the parental prior distribution conditional on k having inherited the allele from s and the probability
of that condition having been met. The progeny subset relative to i through k is excluded from the multiple product
because it is not part of the parental subset relative to k through i, although the other progeny subsets relative to
i are. For example, in Figure 1, the parental subset relative to k through i is the union of {a, b, d, h}, {s}, and {i, q,
r}, which are summarized by P(id), P(is), and the remaining term in [3], respectively. Element 2 of P(ki) contains
the probability that allele 2 was transmitted from i to k conditional on the phenotypes of a, b, h, s, q, and r (i and
d are also included in the parental subset relative to k through i but do not have phenotypes).

If i is a founder, then its dam and sire are not included in the pedigree, so P(id) and P(is) are not defined, but
are replaced in [3] with �, which is the vector of population allele frequencies, a parameter of the analysis. If only
one of i’s parents is included in the pedigree, then the parental prior distribution for that parent is used and � is
used for the meiosis from the unknown parent.

Genotype Probabilities

The genotype distribution of i, G(i), is an A × A matrix with elements that sum to one. It summarizes what can
be inferred about the genotype of i conditional on all the marker phenotypes in the pedigree. The rows and columns
are indexed by aid and ais, respectively, and each element contains the probability that i has the corresponding
genotype. For example, row 1, column 2 of G(i) contains the joint probability that i inherited allele 1 from its dam
and allele 2 from its sire. The expression for computing G(i) is

G(i) = cG(i)−1[P(id) � P(is)′] ° {M(i) ° Π°
t�progeny(i)

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]} [4]

where

cG(i) = ∑([P(id) � P(is)′] ° {M(i) ° Π°
t�progeny(i)

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]})

and the summation in cG(i) is over the elements of the matrix.
In [4], G(i) summarizes the information about the genotype of i contained in all the data. It is computed from

the information about the two alleles in i’s genotype contained in the parental subsets relative to i and the information
about the genotype of i contained in the phenotypes of i and in the progeny subsets relative to i. The union of the
subsets of phenotypes considered in the right-hand side of [4] is the set of all phenotypes in the pedigree.

Recursive Algorithm

Wang et al. (1996) gave a detailed explanation of geno-
typic terminal peeling, which is a noniterative algorithm
for peeling pedigrees that do not contain loops. Terminal
parents have one progeny and no parents in the pedigree.
Terminal progeny have one parent and no progeny. The
terminal individuals are “peeled” away (temporarily re-
moved) from the pedigree with the information that they
contain transferred to the core of the pedigree. Peeling
a layer of terminal individuals results in a new layer of
individuals becoming terminal, and the process is contin-
ued until all of the information is concentrated on a
single individual, at which point the genotype distribu-
tion of that individual can be computed.

To peel the example pedigree in Figure 1 with allelic
peeling, the first step is to transfer the information on
the terminal parents, a, b, s, j, and m, to their connecting

meioses using [3] to compute P(da), P(hb), P(is), P(kj),
and P(pm), respectively, as shown in Table 2. In this
step, the parental prior distributions are replaced with
� (because the terminal parents are founders) and the
multiple products are all null (because each of the termi-
nal individuals is connected to the pedigree by only one
progeny). Individuals a, b, s, j, and m are now peeled so
that h and p are now considered terminal individuals.
Next, the terminal progeny, h, p, q, and r, are peeled
using [1] to compute L(hd), L(pk), L(qi), and L(ri), re-
spectively. Now the terminal individuals are d and k.
To peel d, P(id) is computed from P(da) and L(hd) using
[3] and replacing the parental prior distribution to d
from her dam with �. To peel k, L(ki) is computed from
P(kj) and L(pk) using [1]. At this point, all individuals
except i have been peeled, so G(i) can be computed from
P(id), P(is), L(ki), L(qi), and L(ri) as shown in Table 2.
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Table 2. Computation of the genotype distribution of individual i in Figure 1 by allelic peeling

Scaling
Term Eq. Calculation of kernela Kernelb factorc Resultd

P(da) [3] 0.5 � � ° [M(a) � �] + 0.5 � � ° [M(a)′ � �] 0.11




0.00
0.11
0.00











0.00
1.00
0.00






P(hb) [3] 0.5 � � ° [M(b) � �] + 0.5 � � ° [M(b)′ � �] 0.22




0.11
0.00
0.11











0.50
0.00
0.50






P(is) [3] 0.5 � � ° [M(s) � �] + 0.5 � � ° [M(s)′ � �] 0.11




0.00
0.11
0.00











0.00
0.11
0.00






P(kj) [3] 0.5 � � ° [M(j) � �] + 0.5 � � ° [M(j)′ � �] 0.22




0.11
0.00
0.11











0.50
0.00
0.50






P(pm) [3] 0.5 � � ° [M(m) � �] + 0.5 � � ° [M(m)′ � �] 0.22




0.00
0.11
0.11











0.00
0.50
0.50






L(hd) [1] M(h) � P(hb) 0.33




0.50
0.00
0.50











1.50
0.00
1.50






L(pk) [1] M(p) � P(pm) 0.17




0.50
0.00
0.00











3.00
0.00
0.00






L(qi) [1] M(q) � � 0.11




0.00
0.33
0.00











0.00
3.00
0.00






L(ri) [1] M(r) � � 0.22




0.33
0.33
0.00











1.50
1.50
0.00






P(id) [3] 0.5 � � ° [[0.5 � L(hd) � 1′ + 0.5 � 1 � L(hd)′] � P(da)] 0.50
+ 0.5 � P(da) ° [[0.5 � L(hd) � 1′ + 0.5 � 1 � L(hd)′]′ � �]






0.13
0.25
0.13











0.25
0.50
0.25






L(ki) [1] [0.5 � L(pk) � 1′ + 0.5 � 1 � L(pk)′] � P(kj) 1.25




2.25
0.75
0.75











1.80
0.60
0.60






G(i) [4] [P(id) � P(is)′] ° [0.5 � L(ki) � 1′ + 0.5 � 1 � L(ki)′] 2.19
° [0.5 � L(qi) � 1′ + 0.5 � 1 � L(qi)′]






0.00 0.68 0.00
0.00 1.35 0.00
0.00 0.17 0.00











0.00 0.31 0.00
0.00 0.62 0.00
0.00 0.08 0.00




° [0.5 � L(ri) � 1′ + 0.5 � 1 � L(ri)′]

aThe specific expression for the kernel (the formula with the scaling factor omitted) using the general equation indicated in the previous
column. Terms that do not apply are omitted. For example, because h has no progeny, the multiple product over progeny in [1] is omitted
from the expression for L(hd), and because k has no phenotype, the penetrance matrix is omitted from the expression for L(ki).

bThe results of the expressions in the previous column, based on � =






0.333
0.333
0.333





, M(r) =






0 1 0
1 0 0
0 0 0





, M(b) = M(h) = M(j) = M(p) =






0 0 1
0 0 0
1 0 0





, M(a)

= M(s) = M(q) =






0 0 0
0 1 0
0 0 0





, and M(m) =






0 0 0
0 0 1
0 1 0





. Other terms required are computed in previous rows.

cComputed by summing the elements of the kernel in the previous column (for parental prior and genotypic distributions) or premultiplying
it by the transposed vector of allele frequencies (for progeny likelihoods).

dComputed by dividing the kernel by the scaling factor.
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If genotype probabilities for all the individuals in the
pedigree are desired, the peeling sequence is reversed.
All of the required quantities are available to compute
P(ki), L(id), P(ri), P(qi), P(pk), P(hd), L(pm), L(kj), L(is),
L(hb), and L(da) in the sequence listed. At this point,
the parental prior distributions and progeny likelihoods
are both available for each of the meioses in the pedigree
so that the genotype distribution for each member of the
pedigree can be readily computed using [4].

Under either genotypic or allelic peeling, if the pedi-
gree contained a loop, the loop would remain after all of
the terminal individuals were peeled. At this point, the
recursive algorithm above would fail, because there
would be no entry point into the loop. Cannings et al.
(1978) addressed this problem by peeling on sets of indi-
viduals instead of single individuals, but this algorithm
would not be computationally feasible for the degree of
looping often present in large livestock populations.

Discussion

The term peeling originates from the idea of removing
terminal members of a pedigree recursively by transfer-
ring the genotypic information from them to their par-
ents or progeny and then repeating the process until
there is only one remaining member of the pedigree.
In allelic peeling, the information is transferred to the
meiosis that connects the individual to be peeled with
the core of the pedigree. This information is in the form
of a parental prior distribution or a progeny likelihood
relative to the allele transmitted through this meiosis.
The parental prior distribution of a meiosis is computed
recursively from the parental prior distributions of the
parental meioses, the penetrance function of the parent,
and the progeny likelihoods of the meioses to sibs. The
progeny likelihood of the same meiosis is computed from
the penetrance function of the progeny, the progeny like-
lihoods of the progeny meioses, and the parental prior
distributions of the meioses from the mates. Intermedi-
ate computations of order A × A related to the genotypes
of individuals are required, but because they are com-
puted from terms of order A × 1 and used to compute
terms of order A × 1, fewer computations are required
than in genotypic peeling.

The parental prior distributions are computed by re-
cursive application of Bayes’ theorem in which the prior
distribution of population allele frequencies, �, is condi-
tioned by progressively larger subsets of the data. The
information contained in the parental subsets is summa-
rized in the form of probabilities of alleles because the
initial value for recursion of parental information (prior
allele frequencies) is in this form.

The information contained in the progeny subsets is
summarized in the form of likelihoods of data because
the initial value for recursion of progeny information
(the penetrance matrix) is in this form. This form also
makes it easy to combine information from the subsets
of data recursively. The likelihood of the union of condi-

Table 3. Computations required as a function of the
number of alleles for allelic peeling compared to

genotypic peelinga

Computation Allelic Genotypicb

Parental prior distribution for individual
with no full sibs O(A2) O(A6)

Parental prior distribution for individual
with full sibs N/Ac O(A8)

Progeny likelihood O(A2) O(A6)
Genotype distribution O(A2) O(A2)

aA = number of alleles. O(x) is the number of computing operations
“proportional to x.”

bThe algorithm of Fernando et al. (1993) was used.
cAllelic peeling cannot be applied recursively to pedigrees with full

sibs. However, in the iterative allelic peeling algorithm described by
Thallman et al. (2001), the parental prior distribution is computed
in time O(A2) even when there are full sibs in the pedigree.

tionally independent subsets of data is simply the prod-
uct of the likelihoods of the respective subsets.

The term P(is) enters into the right-hand side of the
expression for L(id) in [1] because the penetrance func-
tion and progeny likelihoods provide information about
which two alleles are in the genotype of i, and P(is)
provides information about which of those two alleles i
inherited from s and, consequently, which is more likely
to have been inherited from d. For example, in Figure
1, the phenotype of p indicates that it has alleles 1 and 3,
but P(pm) indicates that m could contribute only alleles 2
or 3 to i, and therefore L(pk) indicates that p must have
inherited allele 1 from k (Table 2).

In [4], P(id) � P(is)′ can be viewed as a prior genotype
distribution (conditioned by data in the parental subsets
relative to i) that is then conditioned by the likelihood
of data on i and in the progeny subsets relative to i using
Bayes’ theorem to obtain G(i), the posterior genotype
distribution conditional on all the phenotypes. The appli-
cation of Bayes’ theorem is facilitated by the fact that
the data in parental subsets are summarized in the form
of probabilities of alleles and the data in progeny subsets
are summarized in the form of likelihoods of data condi-
tional on alleles.

Full Sibs

Full sibs generate loops and therefore the recursive
algorithm for allelic peeling cannot be used on pedigrees
that include full sibs. The two parental subsets of an
individual and its full sib overlap, and therefore it is
possible for the genotypes of the two parents to be depen-
dent on one another. In the recursive genotypic peeling
algorithm (Fernando et al., 1993), full sibs are peeled by
summing over all possible genotypes of both the sire and
the dam.

Computational Considerations

The major advantage of allelic peeling compared to
genotypic peeling is the scalability with increasing num-
ber of alleles. Table 3 shows that allelic peeling computa-
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tions are proportional to the number of alleles squared,
whereas genotypic peeling is proportional to a mixture
of the number of alleles raised to powers of two, six,
and eight. The memory required to compute genotype
distributions of all individuals in the pedigree is propor-
tional to the number of alleles in allelic peeling and
the number of alleles squared in genotypic peeling. The
number of computations and memory requirements are
roughly proportional to the number of individuals in the
pedigree in both allelic and genotypic peeling.

Part of the difference in number of computations re-
sults from genotypic peeling calculating full-sib probabil-
ities exactly. The number of calculations for individuals
with full sibs is proportional to the number of alleles
raised to the eighth power. Although the recursive algo-
rithm for allelic peeling does not work for pedigrees that
include full sibs, an iterative algorithm for allelic peeling
(Thallman et al., 2001) does not require additional com-
putations for full sibs as compared to the same size pedi-
gree with half sibs.

Assumptions of Conditional Independence

Genotypes of individuals that are connected may be
statistically dependent on one another. For example, in
Figure 1, a change in the phenotype of b could change
inferences about gk, because it could change inferences
about gi. The statistical independence of various subsets
of the pedigree is a critical assumption in all of the
formulas used in peeling. In Figure 1, conditioning on
gi allows the pedigree to be divided into independent
subsets. For example, conditional on gi = [3, 2], a change
in the phenotype of b could no longer change inferences
about gk, because their only connection is through gi,
which is now fixed. Therefore, the pedigree is divided into
several disjoint subsets that are mutually independent
conditional on gi. This conditional independence of sub-
sets of phenotypes is used in the derivations of Eq. [1]
to [4] to partition the likelihoods into components that
are amenable to recursion.

Relationship Between Terms in Genotypic
and Allelic Peeling

The elements of the genotype distribution, G(i), are
equivalent to the genotype probabilities of Fernando et
al. (1993), Pr(ui | y), provided there are no full sibs.
The genotypic posterior probabilities in Fernando et al.
(1993), pij(ui), are proportional to the elements of the
allelic peeling expression,

Π°
t�progeny(i)
t�/progeny(j)

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]

When they are scaled to sum to one, the genotypic ante-
rior probabilities in Fernando et al. (1993), ai(ui), are
analogous to the elements of the allelic peeling expres-
sion, P(id) � P(is)′.

Allelic peeling has computational advantages relative
to genotypic peeling, especially for loci with many alleles.
This paper establishes the framework and notation for
an iterative algorithm that can handle pedigrees with
loops (including full sibs) efficiently (Thallman et al.,
2001).

Implications

Allelic peeling is a method for calculating genotype
probabilities. For loci with many alleles, allelic peeling is
much more computationally efficient than conventional
peeling algorithms. Allelic peeling is especially appro-
priate for computing genotype probabilities of microsa-
tellites. The method is a starting point for addressing
several complicating factors commonly found in live-
stock pedigrees.
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